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A B S T R A C T   

Fluoride ions are an important environmental contaminant and pollutant found in a wide variety of environ-
mental conditions. The fluoride in drinking water is evident to induce toxic effects including neurodegeneration, 
skeletal and dental fluorosis as well as organ damage. Nutraceuticals and functional foods are emerging as 
possible preventive agents against fluoride toxicity. Hence, the possible use of an emerging functional food-the 
coconut haustorium is being evaluated against sodium fluoride-induced toxicity in intestinal cells (IEC-6). The 
cells exposed to fluoride showed significant cell death mediated through the increased lipid peroxidation and 
glutathione depletion. The glutathione biosynthetic enzymes were inhibited by the exposure to fluoride and the 
apoptotic genes (caspases 3/7 and apaf-1) were upregulated. The CHE pre-treatment improved the activity of 
enzymes involved in the de novo biosynthesis of glutathione and subsequently improved the intracellular GSH 
pool. The improved antioxidant defense was also evident from the reduced expression of apoptotic genes (p <
0.05). Overall, the study concludes that fluoride ions induce oxidative stress-mediated apoptosis in intestinal 
epithelial cells, via inhibiting glutathione biosynthesis. Methanol extract of coconut haustorium increased 
glutathione biosynthesis and subsequently prevented fluoride toxicity in IEC-6 cells by virtue of its antioxidant 
potentials.   

1. Introduction 

Fluoride is a common pollutant in various environmental systems 
including terrestrial, aquatic, and even groundwater sources (Su et al., 
2021). It is well-known for its ill effects on animals and humans; these 
effects include skeletal and dental fluorosis, oxidative stress, and organ 
toxicities (Farmus et al., 2021; Shankar et al., 2020). The mode of 
toxicity is through the dietary intake through drinking water, which is 
very common in tropical countries (Shashi and Meenakshi, 2015; Tka-
chenko et al., 2020; Waugh, 2019). Based on the recommendations of 
various studies, World Health Organization has fixed 1.5 ppm of fluoride 
as the maximum permitted level in drinking water, whereas, there are 
several countries with a drinking water fluoride content that is above 
this limit (Tkachenko et al., 2020). In humans and animals, the fluoride 
ions are directly absorbed from the gastrointestinal tract, especially 

from the stomach and across the intestinal epithelial tissues (Villa et al., 
1993). This in turn reported to cause alterations in the composition of 
gastrointestinal microflora and thereby causing changes in the colo-
rectal barrier functioning (Wang et al., 2020). Besides, there is evidence 
that high dietary fluoride intake often tends to increase the risk for the 
overall development of inflammatory bowel diseases (Follin-Arbelet and 
Moum, 2016). In addition, studies have reported that the incidence of 
colorectal cancers is also positively associated with the fluoride intake 
through drinking water (Takahashi et al., 2001; Yang et al., 2000). The 
possible role of nutraceuticals and functional foods in prevention of 
fluoride toxicity has been recently proposed (Susheela and Bhatnagar, 
2002). 

Among the functional foods, the products from Cocos nucifera L or 
Coconut are important. Various parts and products of coconut are widely 
used for edible purposes in various South Asian countries; the 
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predominant products from the coconut include its edible oils, milky 
extract of fresh coconut kernel, and water from tender coconuts. The 
edible oils from fresh, grated coconut kernel or copra and the liquid 
endosperm been emerged as functional foods and have been evaluated 
for their biopharmaceutical potentials. Virgin coconut oil is an impor-
tant functional food and has been known for its antioxidant, anti- 
inflammatory (Narayanankutty et al., 2018), cytoprotective and 
anti-diabetic (Illam et al., 2017), cancer preventive (Narayanankutty 
et al., 2020), and chemoprotective properties (Famurewa et al., 2020a, 
2020b). Apart from these, Coconut water (Rao and Ikram, 2019), co-
conut inflorescence sap (Mammen et al., 2020), and coconut milk 
(Ratheesh et al., 2017) are also known for their health benefits. Pre-
liminary studies on the coconut haustorium as reported by Manivannan 
et al. (2018) and independent studies from Arivalagan et al. (2018) have 
reported the presence of nutritionally active products in it. Despite the 
presence of these nutritional factors in coconut haustorium, the product 
has not been explored for its biological or pharmaceutical effects. 

Due to the significant impact of fluoride on intestinal tissues, the 
present study evaluated the mechanism of fluoride toxicity and the 
protective effect of CHE on fluoride toxicity and emphasizing its roles in 
redox balance and apoptosis. 

2. Materials and methods 

2.1. Chemicals and cell lines 

The fluoride source, sodium fluoride of extra pure grade (NaF), fetal 
bovine serum, RPMI-1640 (without L-glutamine and Sodium pyruvate), 
HEPES buffer (1 M), L-glutamine (200 mM), and sodium pyruvate (100 
mM) were purchased from Sigma Aldrich (St. Louis, MO, United States). 
The two-step Cell to cDNA kit (CellAmp™) was purchased from Takara 
Bio (Bengaluru, India) and qPCR master mix (SYBR™ Select Master Mix) 
was obtained as a generous sample from Thermo Scientific (Massachu-
setts, United States). The remaining chemicals used in the experiment 
were of reagent grade that was procured from SRL Ltd. (Mumbai, India). 

Rat immortalized (normal) intestinal cell line (IEC-6) was obtained 
from the cell repository at NCCS, Pune, India. The IEC-6 cells were 
maintained in complete RPMI-1640 supplemented with 10% FBS, 5% 
CO2 at 37 ◦C and passaged every third day to a fresh T25 cm2 flask 
(Tarson, India). 

2.2. Collection and extraction coconut haustorium 

Mature coconuts were collected and they were maintained in shady 
and moist areas to germinate. The germinated coconut was then de- 
husked and haustorium was collected and dried at 50 

◦

C in an incu-
bator. The dried haustorium (50 g) was then powdered and extracted 
with methanol (250 mL) using the Soxhlet apparatus (Borosil, India). 
The quantity of dried coconut haustorium and yield of extract was 
calculated and expressed s percentage. The methanol extract was then 
dried and re-dissolved in dimethyl sulfoxide (DMSO) for further assays; 
a portion of which was dissolved in HPLC grade methanol for LCMS 
analysis. 

2.3. Characterization of polyphenols by LCMS 

The total phenolic content of the methanol extract of coconut 
haustorium (CHE) was estimated according to the standard protocols 
described by Folin–Ciocalteau method (Fahmi et al., 2021). About, 100 
μL of the coconut haustorium extract was mixed with 800 μL of water 
and 2 mL of 1 N Folins reagent and mixed well. After 5 min, 7 mL of 10% 
(w/v) of Na2CO3 was added and the optical density was measured at 
700 nm after a 30-min incubation. A standard curve was plotted using 
gallic acid as standard and the final quantity was indicated as mg gallic 
acid equivalent (GAE) per gram of tissue. The phenolic compounds 
present in the sample were analyzed using liquid chromatography-mass 

spectrometry by gradient elution method as per the protocols described 
in the studies of Illam et al. (2017). 

2.4. Analysis of the cytoprotective effect 

The cytotoxicity of both CHE and sodium fluoride was assessed by a 
thiazolyl blue tetrazolium bromide assay for 48 h (Mosmann, 1983). The 
doses of CHE, which is causing less than 1% of cell death are considered 
to be biologically safer for cytoprotective studies. The dose corre-
sponding to the IC50 value of sodium fluoride was used to induce 
toxicity in further cytoprotective studies. 

The cells were cultured in T25 cm2 flasks, and actively dividing cells 
at 60–70% confluency were used for the experiment. The collected cells 
were added to 24-well tissue culture-treated plates and allowed to attach 
and grow for 12 h. The cells were then pre-treated with 10, 20, and 40 
μg/mL doses of CHE and kept for 24-h incubation, and the media con-
taining the CHE was replaced with fresh RPMI-1640 media containing 
3.5 mM of NaF. The cell viability in NaF alone treated cells and that of 
CHE pre-treated ones were determined by MTT assay at the end of 24-h 
incubation. 

2.5. Analysis of redox parameters including glutathione metabolizing 
enzymes 

Rat intestinal epithelial cells (IEC-6) were plated in T75 cm2 flasks at 
a density of 1 × 107 cells/mL of complete RPMI-1640 media. The 
attached cells were then pre-treated with different concentrations of 
CHE for 24 h and then exposed to NaF (3.5 mM). A normal flask without 
any treatment and a NaF alone flask was maintained as a negative 
control. At the end of 24 h, the media was removed and washed with 
phosphate-buffered saline, and cells were harvested using mechanical 
cell scrapers. A portion of the cells was used to synthesize cDNA and the 
remaining portion was lysed in phosphate buffer (pH7.0) containing 
protease inhibitor and the lysate was centrifuged at 2000g for 15 min in 
a cold centrifuge (Remi, India) at 4 ◦C to collect the supernatant and 
which was used for biochemical analysis. 

The intracellular reduced glutathione content was quantitatively 
determined using Ellman’s reagent (Nair et al., 2016). Briefly, the re-
action mixture contained 0.1 mL of 20% cell lysate along with 7.5 mM 
DTNB (5,5-dithio-bis-(2-nitrobenzoic acid)), 2.5 mM EDTA, and 0.33 
mM sodium dihydrogen orthophosphate; the optical density of the 
samples was measured at 412 nm using a spectrophotometer. The ac-
tivities of intracellular de novo glutathione biosynthetic enzymes such as 
γ-glutamyl cysteine synthetase (GCS)- that is used for the synthesis of 
γ-glutamyl cysteine, and glutathione synthetase (GS)- that is involved in 
the formation of glutathione, were determined as per the methods 
described in an article published by Volohonsky et al. (2002). The ac-
tivity of detoxification enzymes including glutathione-s-transferase was 
conducted by kinetic spectrophotometric scanning method (Moatamedi 
Pour et al., 2014). Briefly, the reaction mixture contained 200 mM 
reduced glutathione, 100 mM 2,4-Dinitrochlorobenzene in 0.1 M 
phosphate buffer (pH 7.4). The enzymatic activity of glutathione 
reductase was initiated by the addition of 0.05 mL of cell lysate and 
continuous spectrophotometric determination for 5 min. The gluta-
thione peroxidase activity (De Vega et al., 2002) was determined indi-
rectly in terms of the NADPH utilized for the conversion of oxidized 
glutathione (that is formed by GPx activity) to reduced form by gluta-
thione reductase (GR). The intracellular GR activity was estimated as per 
standard protocols available (Mannervik, 2001); briefly, 2 mM oxidized 
glutathione was mixed with 2 mM NADPH in phosphate buffer (0.05 M, 
pH 7.4). The rate of NADPH utilization during enzyme activity was 
estimated as the change in optical density at 340 nm was used to 
calculate. 

The activity of catalase, an enzyme associated with detoxification of 
peroxide radicals, was determined as the rate of cleavage of hydrogen 
peroxide as reported by Al-Oqail et al. (2020). The reaction system was 
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composed of 50 mM phosphate buffer (pH 7.0), 0.036% of hydrogen 
peroxide, and 0.1 mL of cell lysate. The change in absorbance at 240 nm 
was recorded and the rate was calculated. Cellular lipid peroxidation 
status was measured in terms of thiobarbituric acid reactive substances 
(TBARS) and conjugated dienes according to the standard protocols 
available (Chiu et al., 2013; Narayanankutty et al., 2016). The TBARS 
was estimated as malondialdehyde content using a reaction mixture 
contained 8% thiobarbituric acid, 0.8 sodium dodecyl sulfate, and 20% 
acetic acid; the optical density was measured at 532 nm. The conjugated 
diene levels were measured in terms of absorbance at 234 nm. 

2.6. qPCR analysis and detection of apoptosis 

The untreated cells, NaF alone treated cells, and those treated with 
different doses of CHE were collected as described in section 2.5. The 
collected cells were then used for cDNA synthesis using standard pro-
tocols described in the instruction manual of CellAmp™ (Takara Bio, 
India). The cDNA quantity and purity were analyzed and the qPCR 
analysis for the gene expression changes was conducted in Applied 
Biosystem 7500 real-time quantitative PCR using SYBR™ Select Master 
Mix as per the instruction manual (Thermo Scientific, Massachusetts, 
United States). The expression of target genes in different treatment 
groups was conducted against beta-actin as the internal standard. The 
details of primers used have been appended in Table 1. 

The PCR conditions were as follows; the sample was initially dena-
turation at 95 ◦C for 2 min, further 40 cycles composed of denaturation 
at 95 ◦C for 30 s, primer annealing was conducted at 58 ◦C for 45 s, and 
polymerase-mediated extension at 72 ◦C for 30 s. Apart from these, a 
final annealing and extension step was added with 58 ◦C and 72 ◦C for 2 
min. The CT value was calculated by the system software and the fold 
change in expression of target genes was estimated concerning the 
normal cells using the 2− ΔΔCT method as per the protocols described by 
(Livak and Schmittgen, 2001). 

2.7. Statistical analysis 

The in vitro studies were carried out in 24 well plates with 4 replicas 
of each concentration analyzed; the experiment was repeated three 
times for concordant values. The data in the manuscript has been given 
as mean ± SD for each experiment. Gene expression was conducted in 
triplicate for each dose. The Statistical operations were conducted with 
one-way ANOVA followed by the Tukey Kramer test (Graph pad Prism 
7.0, La Jolla, USA). 

3. Results 

3.1. Yield, polyphenol content, and composition analysis by LCMS 

The fresh coconut haustorium yielded 10.97 ± 0.87% as dry coconut 
kernel upon drying; the yield of extract was estimated to be 2.17 ±
0.11% from the dried coconut haustorium. The total polyphenol content 
was estimated to be 57.26 ± 3.65 mg GAE/g of dried coconut hausto-
rium. The LC/MS analysis revealed the presence of both simple phenolic 

acids and complex polyphenols and flavonoids in the CHE. The phenolic 
acids reported in the CHE include ferulic acid, protocatechuic acid, and 
p-coumaric acid; further, complex flavonoids such as catechin, quer-
cetin, Myricetin-3-glucoside was also present in the sample (Table 2). 

3.2. Cytoprotective effect of CHE against NaF-induced cell death 

Methanol extract of Coconut haustorium showed very low cytotox-
icity towards IEC-6 cells with no-observable toxicity till 100 μg/mL over 
48 h. Therefore the study selected doses 10, 20, and 40 μg/mL for further 
cytoprotective studies. Exposure to sodium fluoride has been found to 
reduce the cell viability significantly with an IC50 value of 3.37 mM and 
therefore a dose of 3.5 mM was selected for cytoprotective studies 
(Supplementary material 1). 

The IEC-6 cells were growing normally in the RPMI-1640 media; 
however, exposure to a dose of 3.5 mM NaF reduced the cell viability 
significantly to 48.19 ± 2.1% (Fig. 1a) compared to the untreated cells. 
Pre-treatment with 10, 20, and 40 μg/mL alleviated the toxic effect of 
NaF and improved the cell viability respectively to 56.62 ± 2.8, 70.91 ±
3.1, and 85.11 ± 2.2% (Fig. 1a). As the lower dose CHE was less effective 
in alleviating the cytotoxic effect of NaF, the doses 20 and 40 μg/mL 
were only used for evaluating the antioxidant defense system. 

3.3. Effect on CHE on glutathione metabolism and antioxidant status 

Normal cellular activities of glutathione metabolizing enzymes are 
listed in Table 3. Exposure to NaF (3.5 mM) significantly reduced (p <
0.001) the activities of glutathione biosynthetic enzymes (GCS and GS) 
as well as glutathione-dependent detoxification enzymes (GST and GR) 
compared to the untreated cells. On contrary, the activity of GPx was 
heightened in NaF alone treated cells (p < 0.05) subsequently resulting 
in a reduced level of GSH in cells. Further, the catalase activity was also 
found to be significantly reduced in IEC-6 cells exposed to NaF, 
concomitantly resulting in an elevation in the TBARS and conjugated 
diene levels (Table 3). 

In connection with the cytoprotective properties, the antioxidant 
status in terms of glutathione biosynthetic enzymes was increased upon 
treatment with CHE. Concomitant with an increased GSH level, the GPx 
activity of these cells was restored to normal (Table 4). Further, the 
improvement in cellular antioxidant defense was also reflected in the 
levels of intracellular TBARS as MDA and conjugated dienes in these 
cells (p < 0.05). 

3.4. Apoptosis induction by NaF and protective effect by CHE 

In comparison with the normal cells, the intracellular expression of 
pro-apoptotic genes including caspase-3, caspase-7, and apaf-1 had been 
significantly elevated in the NaF treated IEC-6 cells (Fig. 1b). The 
increased expression of executioner caspase indicates the pro-apoptotic 
role of NaF. However, pre-treatment with the different concentrations of 
CHE, being the lowest level of expression in the highest dose, protected 
the cells from fluoride-induced oxidative insults and subsequent cell 
death (p < 0.05). 

Table 1 
The sequence of primers used in apoptosis detection in IEC-6 cells against the 
internal control gene β-actin.  

Gene Direction Sequence 

Caspase-3 Forward 5′-GTGGAACTGACGATGATATGGC-3′

Reverse 5′-CGCAAAGTGACTGGATGAACC-3′

Caspase-7 Forward 5′- GGACCGAGTGCCCACTTATC-3′

Reverse 5′-TCGCTTTGTCGAAGTTCTTGTT-3′

Apaf-1 Forward 5′-CTGGCAACGGGAGATGACAATGG-3′

Reverse 5′-AGCGGAGCACACAAATGAAGAAGC-3′

β-actin Forward 5′-AAGATCCTGACCGAGCGTGG-3′

Reverse 5′-CAGCACTGTGTTGGCATAGAGG-3′

Table 2 
LC-MS analysis result of the phenolic composition of Coconut haustorium 
methanol extract.  

RT m/z ratio Compound 

1.28 139 4-hydroxy benzoic acid 
1.98 165 p- Coumaric acid 
2.19 155 Protocatechuic acid 
2.91 193 Ferulic acid 
3.38 181 Caffeic acid 
6.15 291 Catechin 
9.90 303 Quercetin 

(RT- Retention Time; m/z ratio-mass to charge ratio). 
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4. Discussion 

Fluoride toxicity is the prevailing concern in the health aspects as 
well as environmental issues associated with that. The toxic effects of 
fluoride ions are numerous and largely affect the ecosystem, plants, 

animals, and humans. Health effects of fluoride include skeletal and 
dental fluorosis as well as multiple organ toxicities. Recent studies 
suggested the application of dietary agents like nutraceuticals and 
functional foods in the prevention of fluoride toxicity significantly. 
Therefore the present study evaluated the preventive efficacy of coconut 
haustorium methanol extract, a fewer studies antioxidant functional 
food in alleviating the fluoride toxicity in intestinal cells. 

The study went on to analyze the mitigating potential of CHE in the 
toxicities induced by sodium fluoride. The intestine is one of the pre-
dominant sites of fluoride absorption and therefore more direct damages 
are expected in intestinal epithelial cells (Nopakun et al., 1989). In 
different in vitro models, fluoride exposure has been shown to induce 
the formation of reactive radical formation subsequently oxidative 
damages and apoptosis (Deng et al., 2016; Ribeiro et al., 2017). Exces-
sive doses of fluoride exposure are also known to induce damages to the 
intestinal mucosa and changes in gut microbiota (Fu et al., 2020; Wang 
et al., 2020). Supporting their reports, the present study also observed a 
significant reduction in glutathione levels and a subsequent increase in 
lipid peroxidation in intestinal cells. In addition, increased expression of 
caspase genes and apaf-1 are observed in fluoride exposed cells; as these 
genes are actively involved in the apoptosis, it is clear that the cell death 
induced by fluoride in IEC-6 cells is also through apoptosis (Parrish 
et al., 2013). Reports have indicated that fluoride induces apoptosis in 
cells mediated through mitochondrial membrane disruption and sub-
sequent activation of intrinsic and extrinsic pathways (Agalakova and 
Gusev, 2012). Interaction of Fas/FasL interaction and P38/MAP kinases 
pathways are also proven to be involved in fluoride-induced apoptosis 
(Thrane et al., 2001). It is therefore possible that the cytoprotective ef-
fect of the CHE may be mediated through the modulation of mito-
chondrial biogenesis or inhibition of apoptotic pathways. 

However, CHE pre-treatment dose-dependently inhibited the cyto-
toxicity induced by fluoride. Providing a mechanistic basis of the cyto-
protection, the treatment with CHE has been shown to enhance the 
enzymatic activity of γGCS and GS; these enzymes are responsible for the 
de novo biosynthesis of glutathione in cells (Janowiak et al., 2006). 
Further, the activity of glutathione reductase (GR), which is responsible 
for the reduction of oxidized glutathione thereby contributing to the 
intracellular reduced glutathione pool (Couto et al., 2016). Therefore, it 
is possible that increased activity of these enzymes may have resulted in 
the observed increase in reduced glutathione levels. In corroboration 
with these, the apoptotic genes are also downregulated with the treat-
ment of CHE as its different doses. It is therefore clear that the CHE 
pre-treatment inhibits the apoptotic cell death in intestinal epithelial 
cells. The anti-apoptotic effect has been accorded to the individual 
polyphenol compounds including ferulic acid and coumaric acid in 
multiple models (Daroi et al., 2021; Ren et al., 2017). It is therefore 
possible that the individual polyphenols identified in CHE by LCMS may 

Fig. 1. Cytoprotective effect of the methanol extract of Coconut haustorium 
against sodium fluoride-induced toxicity in immortalized intestinal cell (IEC-6) 
(a). Change in the expression of genes such as Caspase-3, capsase-7 and Apaf-1 
cells exposed to NaF alone and those pre-treated with CHE (b). The fold change 
in expression is estimated with respect to the untreated normal cells (*indicate 
significant difference with NaF p < 0.05; ** indicate significant difference with 
NaF p < 0.01; and *** indicate significant difference with NaF p < 0.001). 

Table 3 
Alterations in the antioxidant and lipid peroxidation status in IEC-6 cells 
exposed to fluoride (3.5 mM) and the alleviating ability of coconut haustorium 
methanolic extract.  

Treatment Catalase (U/ 
mg protein) 

GSH 
(μmoles/mg 
protein) 

TBARS 
(nmoles/mg 
protein) 

Conjugated Dienes 
(nmoles/mg 
protein) 

Untreated 84.37 ±
2.8*** 

5.81 ±
0.23*** 

1.42 ±
0.15*** 

19.43 ± 2.10*** 

NaF (3.5 
mM) 

36.02 ± 4.2 3.04 ± 0.17 5.78 ± 0.26 80.43 ± 3.11 

CHE 20 μg/ 
mL 

52.25 ±
4.8* 

3.68 ± 0.22* 4.67 ± 0.31* 55.92 ± 3.40* 

CHE 40 μg/ 
mL 

67.01 ±
5.1*** 

4.34 ±
0.30** 

4.05 ±
0.27** 

41.29 ± 5.16*** 

The values are represented as mean ± SD of three independent experiments, 
each carried in triplicate. (*indicate significant difference with NaF control p <
0.05; ** indicate significant difference with NaF control p < 0.01; and *** 
indicate significant difference with NaF control p < 0.001). 

Table 4 
Changes in the activities of glutathione-dependent detoxification enzymes in 
IEC-6 exposed to fluoride and the mitigating efficacy of the Coconut haustorium 
methanol extract.  

Treatment γ-GCS (U/ 
mg 
protein) 

GS (U/mg 
protein) 

GPx (U/ 
mg 
protein) 

GST (U/ 
mg 
protein) 

GR (U/mg 
protein) 

Untreated 4.88 ±
0.22*** 

6.83 ±
0.16*** 

3.44 ±
0.24*** 

8.79 ±
0.41*** 

7.83 ±
0.24*** 

NaF (3.5 
mM) 

2.56 ±
0.15 

4.19 ±
0.24 

5.39 ±
0.17 

4.57 ±
0.32 

4.87 ±
0.19 

CHE 20 
μg/mL 

3.17 ±
0.34* 

4.90 ±
0.18 

4.76 ±
0.14 

5.04 ±
0.28* 

5.54 ±
0.32* 

CHE 40 
μg/mL 

3.94 ±
0.19*** 

5.87 ±
0.27** 

4.02 ±
0.20** 

5.99 ±
0.31*** 

6.38 ±
0.31*** 

The values are represented as mean ± SD of three independent experiments, 
each carried in triplicate. (*indicate significant difference with NaF control p <
0.05; ** indicate significant difference with NaF control p < 0.01; and *** 
indicate significant difference with NaF control p < 0.001). 
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have offered the protective effect against fluoride-induced toxicity by 
inhibiting apoptotic cell death. Oxidative stress and subsequent tissue 
damage are often associated with various degenerative diseases of in-
testinal tissue, especially in the colon (Carini et al., 2017); it is, there-
fore, possible that the use of coconut haustorium may be a useful 
functional food in alleviating these diseases. 

Overall, the present study concludes that the methanol extract of 
coconut alleviates the cell death induced by fluoride. The mechanistic 
basis of action is mediated through the restoration of redox balance and 
inhibition of apoptosis. Hence, the study indicates the possible use of 
coconut haustorium as a functional food in preventing fluoride toxicity 
and its complications. 
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